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Introduction: PWS Maps, their Applications and Properties

Many real world processes in engineering, physics, biology, economics and other sciences,

characterized by ’nonsmooth’ phenomena (such as sharp switching, impacts, friction,

sliding and the like), are often modeled by means of PWS functions (Hommes, Nusse

1991, Day 1994, Matsuyama 1999, 2004, Zhusubaliyev, Mosekilde 2003, Gardini et al.

2008, di Bernardo et al. 2008, Bischi et al. 2009, etc.).

PWS maps are characterized by
� existence of a border (or switching manifold, or critical line) across which the

function changes its definition ! Border Collision Bifurcation (BCB), at which an
invariant set collides with this border, and such a collision leads to a bifurcation
(Nusse, Yorke 1992, 1995), e.g., a BCB of an attracting fixed point may lead directly
to a chaotic attractor (di Bernardo et al. 1999, Gardini et al. 2010, Sushko, Gardini
2008);

� degenerate bifurcations: local bifurcations related to the eigenvalues on the unit
circle under some degeneracy conditions (Sushko, Gardini 2010);

� robustness of chaotic attractors (Banerjee et al. 1998);
� peculiar bifurcation structures which are impossible in smooth systems, e.g., skew

tent map bifurcation structure, period adding and period incrementing bifurcation
structures, etc. (Avrutin, Schanz 2006, Sushko et al. 2015).
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Introduction: Matsuyama’s credit cycles model

Matsuyama’s (AER 2007) Regime-switching model of credit frictions:

� Agents have access to heterogeneous investments;
� A change in the current level of borrower net worth causes the credit flows to switch

across investment projects with different productivity;

� This in turn affects the future level of borrower net worth.

The model generates a rich array of dynamics (the variable is kt = Kt=Lt where Kt is

physical capital, Lt is labor):

We offer a complete characterization of the dynamics for Cobb-Douglas production

function, which makes the dynamical system piecewise linear (MSG, 2018).
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Introduction: 1D discontinuous PWL maps

with one discontinuity point:

g : x! g(x) =

�
gL(x) = aLx+ �L; x < 0
gR(x) = aRx+ �R; x > 0

gL(0) 6= gR(0);

with two discontinuity points:

g : x! g(x) =

8<
:

gL(x) = aLx+ �L; x < dL
gM (x) = aMx+ �M ; dL < x < dR
gR(x) = aRx+ �R; x > dR

gL(dL) 6= gM (dL), gM (dR) 6= gR(dR):

Boundaries of periodicity regions in the parameter space

Suppose g has an attracting cycle of period n � 1. A boundary of the related
periodicity region corresponds to either border collision bifurcation (BCB) of the
cycle, or to a degenerate bifurcation.
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Bifurcation structures in 1D discontinuous PWL maps

Period incrementing structure (0 < aL < 1, �1 < aR < 0)

Period adding structure (0 < aL; aR < 1)
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Credit cycle model with Cobb-Douglas production function

f(kt) = Ak�; 0 < � < 1, after some variable and parameter transformations, is

described by a 1D PWL map with two discontinuities:

g : xt+1 = g(xt) =

8<
:

gL(xt) = (1� �) + �xt if xt < dc
gR(xt) = �xt if dc < xt < dcc
gU (xt) = (1� �) + �xt if xt > dcc

� Fixed points: x� = 0, x�� = 1;
� They are attracting if exist;
� Each fixed point appear/disappear

via a BCB with either dc or with dcc,
i.e., BCB conditions are
dc = 0, dcc = 0 (for x�),
dc = 1, dcc = 1 (for x��).

� Based on the existence of the fixed
point, we can distinguish between the
following parameter regions denoted
A, B, C, SI, SII, SIII:
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Cases SI, SII and SIII (globally attracting fixed points)
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Cases AI, AII (coexisting attracting fixed points)
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Cases AI, AII (coexisting attracting fixed points)

Proposition (Coexistence of attracting fixed points)

For any value of the parameter � 2 (0; 1); when the parameter point (dc; dcc) belongs to

regions A-I or A-II then the attracting fixed points x� = 0 and x�� = 1 coexist. Their

basins of attraction for AI are connected and consist in two intervals, B(0) = (�1; dcc)

and B(1) = (dcc;+1), while for AII they are disconnected and formed by infinitely many

alternating intervals, B(0) = (dc; dcc) [n>0 g
�n

L ((dc; dcc)) and

B(1) = (dcc;+1) [n>0 g
�n

L (J), where J = (dcc; gL(dc)].
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Case B: n-cycles for any n > 1
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Case B: n-cycles for any n > 1

Proposition (period adding structure: first complexity level)

For any � 2 (0; 1) and (dc; dcc) 2 B, the cycle LRn exists for

dc 2
�
(1��)�n

1��n+1
; (1��)�

n�1

1��n+1

�
(region �LRn)

while the cycle RLn exists for

dc 2
�
1� (1��)�n�1

1��n+1
; 1� (1��)�n

1��n+1

�
(region �RLn)

For any fixed n > 1, in the (dc; dcc)-parameter plane the regions �LRn and �RLn are

symmetric wrt the line dc = 0:5; the region �LR is itself symmetric wrt dc = 0:5.
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Case B: n-cycles for any n > 1

Higher complexity levels
Constructing proper first return map, one can show that there are two infinite sequences
of periodicity regions of cycles of the second complexity level, LRn(LRn+1)m and
(LRn)mLRn+1 for any integer m � 1, accumulating as m!1 to �LRn+1 and �LRn ;
respectively.

And, in general, between any two consequent regions of k-th level of
complexity, we can detect two infinite families of periodicity regions of complexity level
(k + 1), accumulating towards the two starting regions.

The union of all these regions does not cover the entire interval dc 2 (0; 1). For the

remaining set (of measure 0) the trajectory is quasiperiodic, dense in the invariant set,

which is a Cantor set (see Hao 1989, Keener 1980, Avrutin et al. 2019).
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Cases CI, CII: x�� coexisting with n-cycles n > 1
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Conclusions

A regime-switching model of credit frictions, proposed by Matsuyama (2007a), can
display a wide array of dynamical behavior. We propose a complete characterization of
the dynamic behavior of this model for the Cobb-Douglas case, which makes the
dynamical system piecewise linear.

Among others, we show
� How overshooting, leapfrogging and reversal of fortune can occur.
� How stable cycles of any period can emerge.
� Along each stable cycle, how the economy alternates between the expansionary and
contractionary phases.
� How asymmetry of cycles (the fraction of time the economy is in the expansionary
phase) varies with the credit frictions parameters.
� How the economy may fluctuate for a long time at a lower level before successfully
escaping from the poverty, etc.
The analysis was done for a restrictive set of assumptions, with only two projects and
two switching points, because it is sufficient to create a rich array of dynamics with a
relatively few parameters. Obviously, with more projects and more switching points, the
model would generate even richer behaviors.

What simplifies the analysis is the discontinuity and piecewise linearity of the dynamics.

Similar results can be numerically obtained with a piecewise smooth discontinuous map

and also when the discontinuous piecewise linear or piecewise smooth map is

approximated by a continuous map with very steep slopes.
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