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What is ”signaling dynamics”?

▶ Signaling dynamics describes interactions between senders and
receivers over time.

▶ Noldeke and Van Damme (1990) analyzes a multiperiod
version of the Spence’s job market signalling mode.

▶ Noldeke and Samuelson (1997) introduce pertabations into
Spence’s dynamic model and examines the condition to chose
one between multiple equilibria.



Signaling dynamics in a labor market

▶ The jobseekers send signals to reveal their true type and the
employers decide to employ whom and how many for given
observations of the job seekers’ signaling.

▶ The signaling is noisy so that the employers cannot figure out
the job seekers true type from the signaling.

▶ Heinsalu (2018) studies costly signaling model in which the
signaling effort is chosen in multiple periods and observed
with noise.

▶ The employers decide their employment level by solving their
profit maximization problem.



Summary of previous research

▶ Analyzes the existence of two types of pooling equilibrium and
unique separating equilibrium when there are two types of job
seekers with different productivity and signaling costs.

▶ Proves analytically that the above equilibria coexist in any
combination.

▶ Examine numerically the multistability of those equilibria and
periodic fluctuations of the employment level.



Aim of this paper

▶ Extend the model to cases where signaling costs are
continuously distributed.

▶ Analyze existence conditions of signaling equilibria.

▶ Numerically examine the local stability of signaling equilibria
and demonstrate complex fluctuations of employment level
with the distribution of signaling costs.



Optimal employment choice of the firm

Production output level y depends on employment level x and
productivity of employed workers. Then,

y ≡
√

1 + α

2
x

Here α is the lowest productivity of employed workers. For given
market price of the production p and wage w for the workers, the
firm choses employment level x to maximize the profit pi given by

π(x) = p · y − 1 + α

2
w

Here dπ/dx ⋚ 0 and d2π/dx2 < 0. Solving the optimization
problem of the firm and normarizing p to 1, we derive a reaction
function f given by

f (α) ≡ argmaxπ(x) =
1

2w2(1 + α)



Expectation of job seekers’ productivity

From the assumption of noisy signaling, the firm cannot recognize
exactly the true productivity of job seekers by observing the
signals. Let e denote the signaling level of job seekers which means
a proportion of job seekers who send a signal.(0 ≤ e ≤ 1) So that
firm takes an expectation on α for given observation of signaling
level e. We assume the relation between α and e that α is
increasing function of the signaling level e.
Firm’s expectation on job seekers’ productivity:

g(e) ≡ a0 + (a1 − a0)e, 0 < a0 < a1 ≤ 1.



Employment policy of the firm

Let M denote the population of job seekers. Firm’s employment
choice as a reaction toward job seekers’ signaling includes the
profit maximization of the firm. Then, the employment level x may
not be equal to the amount of signaling job seekers eM.
The firm shows following employment policy to job seekers.

▶ The firm employs signaling job seekers preferentially.

▶ If x < eM, only a part of signaling job seekers are employed
and no non-signaling job seekers are not employed.

▶ If x > eM, all of signaling job seekers are employed and some
of non-signaling job seekers are employed within the excess
amount.



Effectiveness of signaling

Probability that signaling job seekers are employed:

ρs =


x

eM
if x < eM,

1 if x ≥ eM.

Probability that non-signaling job seekers are employed:

ρn =


0 if x < eM,

x − eM

(1− e)M
if x ≥ eM.



Distribution of signaling cost

Suppose that signaling costs of job seekers are uniformly distributed
in the finite interval [cL, cH ] (0 ≤ cL < cH). Then the cumulative
distribution function of signaling cost, CDF (c) is given by

CDF (c) ≡



0 if c < cL

c − cL
cH − cL

if cL ≤ c ≤ cH

1 if c > cH .



Observation of signaling level

Job seekers send a signal if the expected benefit of signaling σ
exceeds their signaling cost where

σ = psw − pnαw .

Then we denote h as the entire signaling level,

h(x , α, e) ≡



0 if σ < cL,

σ − cL
cH − cL

if cL ≤ σ ≤ cH ,

1 if σ > cH .



3-Dimensional dynamics of signaling market

Summarizing the discussion above finally we construct the
3-dimentional dynamical system as the signaling dynamics.

xt+1 = f (αt)

αt+1 = g(et)

et+1 = h(xt , αt , et).



Signaling equilibria

In this model following three signaling equilibria could exist.

▶ Pooling equilibrium without signaling: no job seeker sends a
signal (e = 0).

▶ Separating equilibrium: some of job seekers send a signal
(0 < e < 1).

▶ Pooling equilibrium with signaling: both of high- and
low-productive job seekers send a signal (e = 1).



Fixed points at pooling equilibria

A fixed point of the dynamical system corresponds to a signaling
equilibrium. Let si denote fixed points at pooling equilibria
(i ∈ {0, 1}). Then

s0 = (x∗0 , α
∗
0, 0),

s1 = (x∗1 , α
∗
1, 1),

where

x∗0 =
1

2(a0 + 1)w2
,

x∗1 =
1

2(a1 + 1)w2
,

α0 = a0, and α1 = a1.



Boundary conditions of pooling equilibria without signaling

Solving the condition σ = cL, we get

x =
cLM

w
e

for x < eM and get

x =
M((a1 − a0)w + w − cL)e + a0w − w + cL)

(a1 − a0)we + a0w

for x > eM.



Boundary conditions of pooling equilibria with signaling

Solving the condition σ = cH , we get

x =
cHM

w
e

for x < eM and get

x =
M((a1 − a0)w + w − cH)e + a0w − w + cH)

(a1 − a0)we + a0w

for x > eM.
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Pooling equilibrium with signaling
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Figure: Unique pooling equilibrium with signaling (cL = 0.1 and cH = 0.2)



Existence of signaling equilibrium 1

Proposition 3.1

For x < eM, a pooling equilibrium with signaling s1 exists if
cH < ĉH and a separating equilibrium exists if cH ≥ ĉH where

ĉH =
2(1− a20)Mw2 + a0

2(a0 + 1))Mw
.



Pooling equilibrium with signaling
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Figure: Unique pooling equilibrium with signaling (cL < ĉH and cH = ĉH)



Multiple separating equilibria 1
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Figure: Separating equilibria (cL ≃ 0.66619 and cH = 1)



Multiple separating equilibria 2
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Figure: Coexitence of 3 separating equilibria (cL = 0.925 and cH = 1)



Existence of signaling equilibrium 2

Proposition 3.2

For x > eM, a pooling equilibrium without signaling s0 exists if
cL > ĉL where

ĉL =
1

2a1 + 2)wM)
.



Pooling equilibrium without signaling
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Figure: Coexistence of separating and non-signaling pooling equilibrium
(cL < ĉL and cH > ĉL)



Existence conditions of signaling equilibria

Assuming that cL < cH ,

▶ If cH ≤ ĉH , pooling equilibrium s1 exists in {(x , e)|x < eM}
and is unique.

▶ If cH > ĉH , separating equilibrium exists in {(x , e)|x < eM}
and is unique.

▶ In {(x , e)|x > eM}, separating equilibria co-exist.

▶ If cL ≥ ĉL, pooling equilibrium s0 and separating equilibrium
co-exist in {(x , e)|x > eM}.



Existence conditions of signaling equilibria
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Figure: Existence conditions of signaling equilibria with cLand cH



Existence conditions of signaling equilibria

Figure: Existence conditions of signaling equilibria with cLand cH



Local stabilities of stationary points

Let J∗ denotes a Jacobian matrix of signaling dynamics evaluated
at a stationary point si ,

J∗i ≡

 0 f ′(α∗
i ) 0

0 0 g ′(e∗i )
∂h
∂x∗i

∂h
∂α∗

i

∂h∗i
∂e∗i

 .

Suppose that the eigenvalues λn solves following characteristic
polynomial,

det (λI − J∗) = −λ3
n −

∂h

∂e∗i
λ2
n − g ′(e∗i )

∂h

∂α∗
i

λn + f ′(α∗
i )g

′(e∗i )
∂h

∂x∗i
= 0.

Then, si is locally stable if all of λn are real or complex numbers
with absolute value strictly less than 1.



Numerical experiments

▶ Examine local stability of the fixed points and bifurcations
with variation of cL and cH .

▶ Other parameters are w = 1, M = 1, a0 = 0.1 and a1 = 1.

▶ Demonstrate basins of attractions in the case of multistability.



Local stabilities of stationary points with signaling costs cL
and cH

Figure: Bifurcation diagram with signaling costs cH and cL



Local stabilities of stationary points with signaling costs cL
and cH

Figure: Bifurcation of signaling dynamics with cL and cH



Local stabilities of stationary points with signaling costs cL
and cH

Figure: Bifurcations of employment level x with cH (cL = 0.2)



Local stabilities of stationary points with signaling costs cL
and cH

Figure: Bifurcation of signaling dynamics with cL and cH



Local stabilities of stationary points with signaling costs cL
and cH

Figure: Bifurcations of employment level x with cL (cH = 0.98)



Local stabilities of stationary points with signaling costs cL
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Figure: Bifurcation of signaling dynamics with cL and cH



Local stabilities of stationary points with signaling costs cL
and cH

Figure: Bifurcation of signaling dynamics with cL and cH



Local stabilities of stationary points with signaling costs cL
and cH

Figure: Bifurcation of signaling dynamics with cL and cH



Multi-stability of pooling equilibrium and periodic cycles

Figure: Basins of attractions with cL = 0.96 and cH = 0.97



Multi-stability of pooling equilibrium and periodic cycles

Figure: Basins of attractions with cL = 0.96 and cH = 0.975



Multi-stability of pooling equilibrium and periodic cycles

Figure: Basins of attractions with cL = 0.96 and cH = 0.985



Results of numerical experiments

▶ Pooling equilibrium with signaling s1 (e∗ = 1) is alway locally
stable if it exists.

▶ For x < eM, unique separating equilibrium emarge if cH > ĉH
and is always locally unstable.

▶ The signaling dynamics shows complex fluctuations of the
employment level for various parameters’ combination of cL
and cH .

▶ If pooling equilibrium without signaling s0 (e∗ = 0) is locally
stable, multi-stability is obserbed.



Concluding remarks

▶ Signaling dynamics with a continuous distribution of job
seekers’ signaling cost can have all of 3 types of equilibria and
show complex fluctuations of employment level.

▶ Pooling equilibrium WITH signaling is unique and locally
stable if it exists.

▶ Pooling equilibrium WITHOUT signaling is co-existing with
separating equilibria and is locally stable while the separating
equilibria are unstable.

▶ In a case of multiple equilibria, the signaling dynamics
converges to different stationary point or a periodic cycle
depending on its initial point.



Thank You!

D�KU�!
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