Employment fluctuations in noisy signaling labor market

Yasuo NONAKA

College of Economics, Kanto Gakuin University, Japan

11th NED September 5, 2019 Kyiv School of Economics

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction

Model

Analysis

Numerical experiment

Concluding remarks

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

- Signaling dynamics describes interactions between senders and receivers over time.
- Noldeke and Van Damme (1990) analyzes a multiperiod version of the Spence's job market signalling mode.
- Noldeke and Samuelson (1997) introduce pertabations into Spence's dynamic model and examines the condition to chose one between multiple equilibria.

- The jobseekers send signals to reveal their true type and the employers decide to employ whom and how many for given observations of the job seekers' signaling.
- The signaling is noisy so that the employers cannot figure out the job seekers true type from the signaling.
- Heinsalu (2018) studies costly signaling model in which the signaling effort is chosen in multiple periods and observed with noise.
- The employers decide their employment level by solving their profit maximization problem.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Analyzes the existence of two types of pooling equilibrium and unique separating equilibrium when there are two types of job seekers with different productivity and signaling costs.
- Proves analytically that the above equilibria coexist in any combination.
- Examine numerically the multistability of those equilibria and periodic fluctuations of the employment level.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Extend the model to cases where signaling costs are continuously distributed.
- Analyze existence conditions of signaling equilibria.
- Numerically examine the local stability of signaling equilibria and demonstrate complex fluctuations of employment level with the distribution of signaling costs.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Optimal employment choice of the firm

Production output level y depends on employment level x and productivity of employed workers. Then,

$$y \equiv \sqrt{\frac{1+\alpha}{2}x}$$

Here α is the lowest productivity of employed workers. For given market price of the production p and wage w for the workers, the firm choses employment level x to maximize the profit pi given by

$$\pi(x) = p \cdot y - rac{1+lpha}{2}w$$

Here $d\pi/dx \leq 0$ and $d^2\pi/dx^2 < 0$. Solving the optimization problem of the firm and normarizing *p* to 1, we derive a reaction function *f* given by

$$f(\alpha) \equiv \arg \max \pi(x) = \frac{1}{2w^2(1+\alpha)}$$

From the assumption of noisy signaling, the firm cannot recognize exactly the true productivity of job seekers by observing the signals. Let *e* denote the signaling level of job seekers which means a proportion of job seekers who send a signal. $(0 \le e \le 1)$ So that firm takes an expectation on α for given observation of signaling level *e*. We assume the relation between α and *e* that α is increasing function of the signaling level *e*. Firm's expectation on job seekers' productivity:

$$g(e) \equiv a_0 + (a_1 - a_0)e, \quad 0 < a_0 < a_1 \le 1.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let M denote the population of job seekers. Firm's employment choice as a reaction toward job seekers' signaling includes the profit maximization of the firm. Then, the employment level x may not be equal to the amount of signaling job seekers eM. The firm shows following employment policy to job seekers.

- The firm employs signaling job seekers preferentially.
- If x < eM, only a part of signaling job seekers are employed and no non-signaling job seekers are not employed.
- If x > eM, all of signaling job seekers are employed and some of non-signaling job seekers are employed within the excess amount.

Probability that signaling job seekers are employed:

$$\rho_{s} = \begin{cases} \frac{x}{eM} & \text{if } x < eM, \\ 1 & \text{if } x \ge eM. \end{cases}$$

Probability that non-signaling job seekers are employed:

$$\rho_n = \begin{cases} 0 & \text{if } x < eM, \\ \frac{x - eM}{(1 - e)M} & \text{if } x \ge eM. \end{cases}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Suppose that signaling costs of job seekers are uniformly distributed in the finite interval $[c_L, c_H]$ ($0 \le c_L < c_H$). Then the cumulative distribution function of signaling cost, CDF(c) is given by

$$CDF(c) \equiv \left\{ egin{array}{cc} 0 & ext{if} & c < c_L \ \ rac{c-c_L}{c_H-c_L} & ext{if} & c_L \leq c \leq c_H \ \ \ 1 & ext{if} & c > c_H. \end{array}
ight.$$

Job seekers send a signal if the expected benefit of signaling σ exceeds their signaling cost where

$$\sigma = p_s w - p_n \alpha w.$$

Then we denote h as the entire signaling level,

$$h(x, \alpha, e) \equiv \begin{cases} 0 & \text{if } \sigma < c_L, \\ \frac{\sigma - c_L}{c_H - c_L} & \text{if } c_L \le \sigma \le c_H, \\ 1 & \text{if } \sigma > c_H. \end{cases}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Summarizing the discussion above finally we construct the 3-dimentional dynamical system as the signaling dynamics.

$$\begin{aligned} x_{t+1} &= f(\alpha_t) \\ \alpha_{t+1} &= g(e_t) \\ e_{t+1} &= h(x_t, \alpha_t, e_t) \end{aligned}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

In this model following three signaling equilibria could exist.

Pooling equilibrium without signaling: no job seeker sends a signal (e = 0).

- Separating equilibrium: some of job seekers send a signal (0 < e < 1).</p>
- Pooling equilibrium with signaling: both of high- and low-productive job seekers send a signal (e = 1).

A fixed point of the dynamical system corresponds to a signaling equilibrium. Let s_i denote fixed points at pooling equilibria $(i \in \{0, 1\})$. Then

$$egin{array}{rcl} s_0 &=& (x_0^*, lpha_0^*, 0), \ s_1 &=& (x_1^*, lpha_1^*, 1), \end{array}$$

where

$$egin{aligned} &x_0^* = rac{1}{2(a_0+1)w^2}, \ &x_1^* = rac{1}{2(a_1+1)w^2}, \end{aligned}$$

 $\alpha_0 = a_0$, and $\alpha_1 = a_1$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Solving the condition $\sigma = c_L$, we get

$$x = \frac{c_L M}{w} e$$

for x < eM and get

$$x = \frac{M((a_1 - a_0)w + w - c_L)e + a_0w - w + c_L)}{(a_1 - a_0)we + a_0w}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

for x > eM.

Solving the condition $\sigma = c_H$, we get

$$x = \frac{c_H M}{w} e$$

for x < eM and get

$$x = \frac{M((a_1 - a_0)w + w - c_H)e + a_0w - w + c_H)}{(a_1 - a_0)we + a_0w}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

for x > eM.

Pooling equilibrium with signaling

Figure: Unique pooling equilibrium with signaling $(c_L = 0.1 \text{ and } c_H = 0.2)$

Proposition 3.1

For x < eM, a pooling equilibrium with signaling s_1 exists if $c_H < \hat{c}_H$ and a separating equilibrium exists if $c_H \ge \hat{c}_H$ where

$$\hat{c}_{H} = rac{2(1-a_{0}^{2})Mw^{2}+a_{0}}{2(a_{0}+1))Mw}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Pooling equilibrium with signaling

Figure: Unique pooling equilibrium with signaling $(c_L < \hat{c}_H \text{ and } c_H = \hat{c}_H)$

Multiple separating equilibria 1

Multiple separating equilibria 2

Figure: Coexitence of 3 separating equilibria $(c_L = 0.925 \text{ and } c_H = 1)$

Proposition 3.2

For x > eM, a pooling equilibrium without signaling s_0 exists if $c_L > \hat{c}_L$ where

$$\hat{c}_L = \frac{1}{2a_1 + 2)wM}.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Pooling equilibrium without signaling

Figure: Coexistence of separating and non-signaling pooling equilibrium $(c_L < \hat{c}_L \text{ and } c_H > \hat{c}_L)$ Assuming that $c_L < c_H$,

- If c_H ≤ ĉ_H, pooling equilibrium s₁ exists in {(x, e)|x < eM} and is unique.
- If c_H > ĉ_H, separating equilibrium exists in {(x, e)|x < eM} and is unique.
- ▶ In $\{(x, e)|x > eM\}$, separating equilibria co-exist.
- If c_L ≥ ĉ_L, pooling equilibrium s₀ and separating equilibrium co-exist in {(x, e)|x > eM}.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Existence conditions of signaling equilibria

Figure: Existence conditions of signaling equilibria with c_L and c_H

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Existence conditions of signaling equilibria

Figure: Existence conditions of signaling equilibria with c_L and c_H

イロト 不得 トイヨト イヨト

э

Let J^* denotes a Jacobian matrix of signaling dynamics evaluated at a stationary point s_i ,

$$J_i^* \equiv \left(egin{array}{ccc} 0 & f'(lpha_i^*) & 0 \ 0 & 0 & g'(e_i^*) \ rac{\partial h}{\partial x_i^*} & rac{\partial h}{\partial lpha_i^*} & rac{\partial h_i^*}{\partial e_i^*} \end{array}
ight).$$

Suppose that the eigenvalues λ_n solves following characteristic polynomial,

$$det (\lambda I - J^*) = -\lambda_n^3 - \frac{\partial h}{\partial e_i^*} \lambda_n^2 - g'(e_i^*) \frac{\partial h}{\partial \alpha_i^*} \lambda_n + f'(\alpha_i^*) g'(e_i^*) \frac{\partial h}{\partial x_i^*} \\ = 0.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Then, s_i is locally stable if all of λ_n are real or complex numbers with absolute value strictly less than 1.

- Examine local stability of the fixed points and bifurcations with variation of c_L and c_H.
- Other parameters are w = 1, M = 1, $a_0 = 0.1$ and $a_1 = 1$.
- Demonstrate basins of attractions in the case of multistability.

Local stabilities of stationary points with signaling costs $c_{\rm L}$ and $c_{\rm H}$

Local stabilities of stationary points with signaling costs $c_{\rm L}$ and $c_{\rm H}$

Figure: Bifurcation of signaling dynamics with $c_{H_{1}}$ and $c_{H_{1}}$ = $\sim \sim \sim$

Local stabilities of stationary points with signaling costs c_L and c_H

Figure: Bifurcations of employment level x with c_H ($c_L = 0.2$)

▲□▶ ▲圖▶ ▲園▶ ▲園▶ 三国 - 釣A@

Local stabilities of stationary points with signaling costs $c_{\rm L}$ and $c_{\rm H}$

Figure: Bifurcation of signaling dynamics with c_{\downarrow} and $c_{H, \pm}$, c_{\downarrow} , $c_$

Local stabilities of stationary points with signaling costs c_L and c_H

Figure: Bifurcations of employment level x with c_L ($c_H = 0.98$)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Local stabilities of stationary points with signaling costs c_L and c_H

Figure: Bifurcation of signaling dynamics with c_{H} and $c_{H} = c_{H}$

Local stabilities of stationary points with signaling costs $c_{\rm L}$ and $c_{\rm H}$

Figure: Bifurcation of signaling dynamics with c_L and c_H

≣। E • • • •

Local stabilities of stationary points with signaling costs $c_{\rm L}$ and $c_{\rm H}$

Figure: Bifurcation of signaling dynamics with c_L and c_H

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Multi-stability of pooling equilibrium and periodic cycles

Figure: Basins of attractions with $c_L = 0.96$ and $c_H = 0.97$

Multi-stability of pooling equilibrium and periodic cycles

Figure: Basins of attractions with $c_L = 0.96$ and $c_H = 0.975$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Multi-stability of pooling equilibrium and periodic cycles

Figure: Basins of attractions with $c_L = 0.96$ and $c_H = 0.985$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Pooling equilibrium with signaling s₁ (e^{*} = 1) is alway locally stable if it exists.
- ► For x < eM, unique separating equilibrium emarge if c_H > ĉ_H and is always locally unstable.
- The signaling dynamics shows complex fluctuations of the employment level for various parameters' combination of c_L and c_H.
- If pooling equilibrium without signaling s₀ (e^{*} = 0) is locally stable, multi-stability is obserbed.

- Signaling dynamics with a continuous distribution of job seekers' signaling cost can have all of 3 types of equilibria and show complex fluctuations of employment level.
- Pooling equilibrium <u>WITH</u> signaling is unique and locally stable if it exists.
- Pooling equilibrium <u>WITHOUT</u> signaling is co-existing with separating equilibria and is locally stable while the separating equilibria are unstable.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

In a case of multiple equilibria, the signaling dynamics converges to different stationary point or a periodic cycle depending on its initial point. Thank You! ДЯКУЮ!