The stochastic sensitivity of bull- and bear states in an asset market

Jochen Jungeilges ^[1,2] Tatyana Ryazanova ^[2]

 University of Agder, School of Business and Law, Kristiansand S, Norway
 Ural Federal University, Institute of Natural Sciences and Mathematics, Ekaterinburg, Russia

September 5, 2019

NED 2019

Conference on Nonlinear Economic Dynamics Kyiv School of Economics Kiev, Ukraine, September 4-6

Background

Research area: Asset markets with heterogenous investors Seminal model: Day and Huang (1990), Huang and Day (1993).

- Tramontana et al. (2010)
- Tramontana et al. (2011)
- Tramontana et al. (2013)
- Tramontana et al. (2014)
- Tramontana et al. (2015)
- Sushko et al. (2015)
- Panchuk et al. (2018)

Quest for future efforts:

- Illow for asymmetric response around the fundamental value.
- Oiversify no-trade intervals.
- 3 Intensify the stochastic modelling effort.

Scope of the project

- Model: A stochastic DH asset-price process
 - Asymmetries in trading behavior within agent-type
 - No-trade intervals of agent-types do not coincide
 - Types of noise: additive and parametric
- Goal: Further our understanding of the asset price dynamics in speculative markets
 - Study the dynamics of the deterministic map (5 linear pieces map with 2 discontinuities).
 - Analyze the sensitivity of stochastic equilibria.
 - Identify different types of transitions.
 - Unravel the "genesis" of the transitions.

Method: Indirect method, stochastic sensitivity function (SSF) Milstein and Ryashko (1995)

Definition 1

The excess demand of α -investors is given by

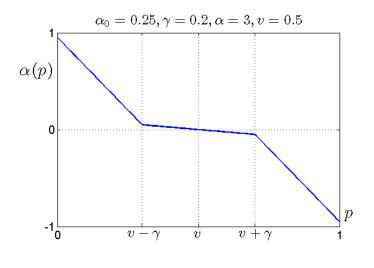
$$\alpha(p) = \begin{cases} \alpha_0 \gamma - \alpha_l (p - v + \gamma), & p \le v - \gamma; \\ \alpha_0 (v - p), & v - \gamma$$

 $v \in (0,1)$, $0 < \gamma < min(v, 1 - v)$, $\alpha_0 \ge 0$, $\alpha_I \ge 0$, $\alpha_u \ge 0$.

Assumption 1

$$\alpha_I \geq \alpha_0, \ \alpha_u \geq \alpha_0$$

Fundamentalists



Jochen Jungeilges ^[1,2], Tatyana Ryazanova [[]The stochastic sensitivity of bull- and bear state September 3.5 S

Definition 2

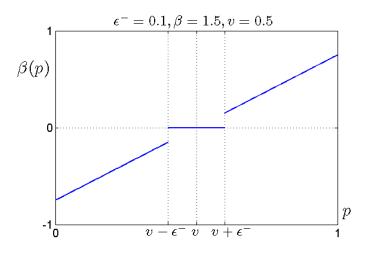
The excess demand of the β -investors is given by

$$\beta(p) = \begin{cases} \beta_l(p-v), & p \leq v - \epsilon^-; \\ \beta_u(p-v), & p \geq v + \epsilon^-; \\ 0, & \text{o.w.} \end{cases}$$

with $p \in (0, 1)$, $0 < \epsilon^{-} < min(v, 1 - v)$, $\beta_{l} \ge 0$, $\beta_{u} \ge 0$.

3

Chartists



Deterministic Price process

Price process

Relying on Definitions 1 and 2 the asset price process can be given as

$$p_{t+1} = f(p_t) = p_t + \alpha(p_t; \gamma, \alpha_0, \alpha_I, \alpha_u, \mathbf{v}) + \beta(p_t, \epsilon^-; \beta_I, \beta_u, \mathbf{v})$$
(1)

with $p_0 \in (0, 1)$.

Case: $\gamma > \epsilon^-$

If $\gamma > \epsilon^-$ then the price process is given by $p_{t+1} = f(p_t)$ with

$$f(p) = \begin{cases} f_1(p) = (1 - \alpha_l + \beta_l)p + \alpha_0\gamma + \alpha_l\gamma - \alpha_l\gamma - \beta_l\nu, & 0 \le p < \nu - \gamma; \\ f_2(p) = (1 - \alpha_0 + \beta_l)p + \alpha_0\nu - \beta_l\nu, & \nu - \gamma \le p \le \nu - \epsilon^-; \\ f_3(p) = (1 - \alpha_0)p + \alpha_0\nu, & \nu - \epsilon^- < p < \nu + \epsilon^-; \\ f_4(p) = (1 - \alpha_0 + \beta_r)p + \alpha_0\nu - \beta_r\nu, & \nu + \epsilon^- \le p \le \nu + \gamma; \\ f_5(p) = (1 - \alpha_r + \beta_r)p - \alpha_0\gamma + \alpha_r\nu + \alpha_r\gamma - \beta_r\nu, & \nu + \gamma < p \le 1. \end{cases}$$

$\gamma > \epsilon^-$: Equilibria

Assumption 2

 $\alpha > \beta + 1$

Assumption 3

$$\alpha_r = \alpha_I = \alpha$$
 and $\beta_r = \beta_I = \beta$.

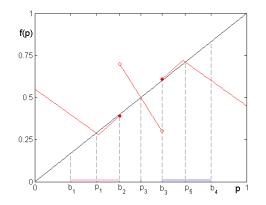
Result 1

Let $\underline{\delta} = \max\left(\alpha - \frac{\nu}{\gamma}(\alpha - \beta), \alpha - \frac{1-\nu}{\gamma}(\alpha - \beta)\right)$. Suppose Assumptions 2 and 3 hold. If $\gamma < \nu$ and $\alpha_0 \in (\underline{\delta}, \beta)$ then the equilibria

$$p_1 = v - rac{\gamma(\alpha - lpha_0)}{lpha - eta}, \ p_3 = v, \ p_5 = v + rac{\gamma(\alpha - lpha_0)}{lpha - eta}$$

exist. The equilibria p_1 and p_5 are locally stable if $\beta > \alpha - 2$ and p_3 is stable if $0 < \alpha_0 < 2$.

Immediate basins



$$b_1 = v - rac{\epsilon^- - (lpha - lpha_0)\gamma}{1 - lpha + eta}$$
 $b_2 = v - \epsilon^ b_3 = v + \epsilon^ b_4 = v + rac{\epsilon^- - (lpha - lpha_0)\gamma}{1 - lpha + eta}$

Stochastic price process

Relying on Definitions 4 and 6 the asset price process can be given as

$$p_{t+1} = p_t + \alpha(p_t; \gamma, \alpha_0, \alpha, \nu) + \beta(p_t, \epsilon^-; \beta + \pi\xi_t, \nu) + \varepsilon\xi_t$$
(2)

with $p_0 \in (0,1)$, $\varepsilon, \pi \ge 0$, $\xi_t \sim N(0,1)$.

$$\begin{split} \pi &= 0, \varepsilon > 0 \quad \text{additive shocks} \\ \pi &> 0, \varepsilon = 0 \quad \text{parametric shocks} \\ \pi &> 0, \varepsilon > 0 \quad \text{mixture} \end{split}$$

Sensitivity analysis via SSF

We can represent (2) as

$$p_{t+1} = f(p_t) + \varepsilon g(p_t) \xi_t \tag{3}$$

where $g(\bullet)$ denotes a smooth function.

Assumption 4

For $\varepsilon = 0$ (3) has an exponentially stable equilibrium \bar{p} .

Let $p_t(\varepsilon)$ be the solution of (3) with $p_0(\varepsilon) = \bar{p} + \varepsilon \nu_0$ then

$$z_t = \lim_{\varepsilon o 0} rac{p_t(arepsilon) - ar{p}}{arepsilon}$$

characterizes the sensitivity of the price equilibrium to i.i.d. shocks.

$$z_{t+1} = f'(\bar{p})z_t + g(\bar{p})\xi_t$$

Sensitivity continued

Focus on the dynamics of second moments: $V_t = \mathbb{E}[z_t^2]$

$$V_{t+1} = [f'(\bar{p})]^2 V_t + g(\bar{p})$$

Assumption 4 $\Rightarrow | f'(\bar{p}) | < 1$

$$\omega = \lim_{t o \infty} V_t = rac{g^2(ar{
ho})}{1 - [f'(ar{
ho})]^2}$$

Confidence interval: $\bar{p} \pm k\varepsilon\sqrt{2\omega}$ where $k = erf^{-1}(0.99)$ Remarks:

• ω and ε define the borders of the confidence interval for \bar{p} .

• $D = \varepsilon^2 \omega$ is related to the variance matrix of the stationary density.

- ω is the stochastic sensitivity function (SSF) for the attractor \bar{p} .
- The SSF relates the intensity of stochastic signal ε^2 .

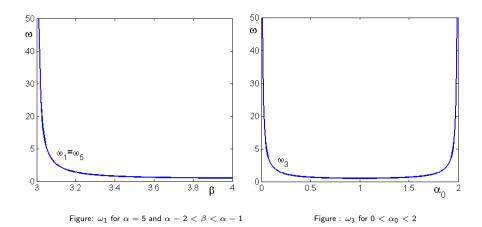
Sensitivity analysis for the stochastic price process

Case $\gamma > \epsilon^-$: additive noise, i.e. $g(\bar{p}) = 1$

$$f'(p) = \begin{cases} 1 - \alpha + \beta, & 0 \le p < v - \gamma; \\ 1 - \alpha_0 + \beta, & v - \gamma \le p \le v - \epsilon^-; \\ 1 - \alpha_0, & v - \epsilon^- < p < v + \epsilon^-; \\ 1 - \alpha_0 + \beta, & v + \epsilon^- \le p \le v + \gamma; \\ 1 - \alpha + \beta, & v + \gamma < p \le 1. \end{cases}$$

$$\omega_1 = \frac{1}{1 - (1 - \alpha + \beta)^2} \quad \omega_3 = \frac{1}{1 - (1 - \alpha_0)^2} \quad \omega_5 = \frac{1}{1 - (1 - \alpha + \beta)^2}$$

Jochen Jungeilges $^{[1,2]}$, Tatyana Ryazanova $^{[\cdot]}$ The stochastic sensitivity of bull- and bear sta



Confidence intervals

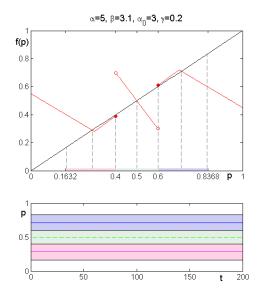
$$p_{1}: \quad v - \frac{\gamma(\alpha - \alpha_{0})}{\alpha - \beta} \pm k\varepsilon \sqrt{\frac{2}{1 - (1 - \alpha + \beta)^{2}}}$$
$$p_{3}: \quad v \pm k\varepsilon \sqrt{\frac{2}{1 - (1 - \alpha_{0})^{2}}}$$
$$p_{5}: \quad v + \frac{\gamma(\alpha - \alpha_{0})}{\alpha - \beta} \pm k\varepsilon \sqrt{\frac{2}{1 - (1 - \alpha + \beta)^{2}}}$$

Jochen Jungeilges $^{[1,2]}$, Tatyana Ryazanova $^{[\cdot}$ The stochastic sensitivity of bull- and bear sta

- 一司

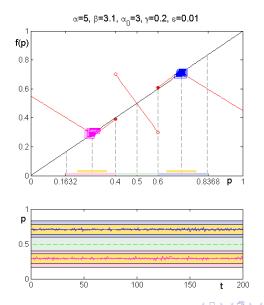
э

Case 2: stable: p_1, p_5 unstable p_3 ; $\varepsilon = 0$



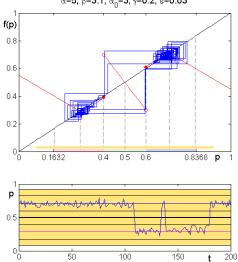
Jochen Jungeilges $^{[1,2]}$, Tatyana Ryazanova $^{[\cdot}$ The stochastic sensitivity of bull- and bear sta

Case 2: stable: p_1, p_5 unstable p_3 ; $p_0 = p_1(p_5)$, $\varepsilon = 0.01$



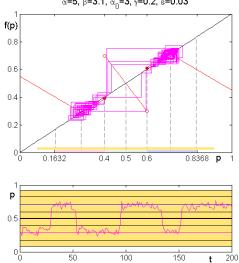
September 5, 2019 18 / 28

Case 2: stable: p_1, p_5 unstable p_3 ; $p_0 = p_5$, $\varepsilon = 0.03$



α=5, β=3.1, α₀=3, γ=0.2, ε=0.03

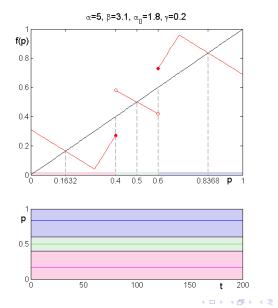
Case 2: stable: p_1, p_5 unstable p_3 ; $p_0 = p_1$, $\varepsilon = 0.03$



α=5, β=3.1, α₀=3, γ=0.2, ε=0.03

September 5, 2019

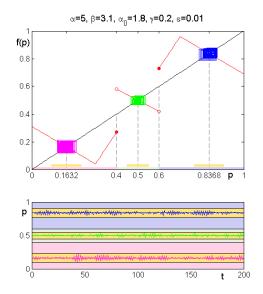
Case 3: stable $p_1, p_3, p_5, \varepsilon = 0$



Jochen Jungeilges $^{[1,2]}$, Tatyana Ryazanova $^{[\cdot]}$ The stochastic sensitivity of bull- and bear sta

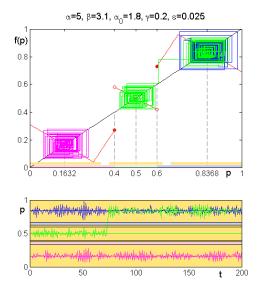
September 5, 2019

Case 3: stable $p_1, p_3, p_5, p_0 = p_i, \epsilon = 0.01$



Jochen Jungeilges ^[1,2], Tatyana Ryazanova ^{[;}The stochastic sensitivity of bull- and bear states September 5, 2019

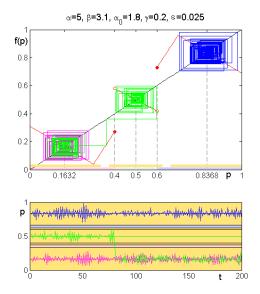
Case 3: stable $p_1, p_3, p_5, p_0 = p_i, \epsilon = 0.025$



Jochen Jungeilges ^[1,2], Tatyana Ryazanova ^{[/}The stochastic sensitivity of bull- and bear sta

A.

Case 3: stable $p_1, p_3, p_5, p_0 = p_i, i \in \{1, 3, 5\}, \varepsilon = 0.025$



Jochen Jungeilges $^{[1,2]}$, Tatyana Ryazanova $^{['}$ The stochastic sensitivity of bull- and bear states and set \sim

- Key elements in the genesis of transition between boom and bust states:
 - immediate basins of attraction,
 - Confidence ellipses of attractors
- The noise levels at which transitions become likely depends on trading intensities.
- In the case of additive noise, transitions between equilibria might occur even if all equilibria are stable.
- Transitions are more likely to occur under parametric noise than under additive noise (work in progress).

- Day, R. H. and Huang, W. (1990). Bulls, bears and market sheep. *Journal* of Economic Behavior & Organization, 14(3):299–329.
- Huang, W. and Day, R. (1993). Chaotically switching bear and bull markets: The derivation of stock price distributions from behavior rules. In Day, R. and Chen, P., editors, *Nonlinear Dynamics and Evolutionary Economics*. Oxford University Press.
- Milstein, G. and Ryashko, L. (1995). The first approximation in the quasipotential problem of stability of non-degenerate systems with random perturbations. *Applied Mathematics and Mechanics*, 1(59):51–XX. in Russian.
- Panchuk, A., Sushko, I., and Westerhoff, F. (2018). A financial market model with two discontinuities: Bifurcation structures in the chaotic domain. *Chaos*, 28(055908).

References II

Sushko, I., Tramontana, F., Westerhoff, F., and Avrutin, V. (2015). Symmetry breaking in a bull and bear financial market model. *Chaos, Solitons & Fractals*, 79:57 – 72. Proceedings of the MDEF (Modelli Dinamici in Economia e Finanza Dynamic Models in Economics and Finance) Workshop, Urbino 18th20th September 2014.

Tramontana, F., Gardini, L., and Westerhoff, F. (2011). Heterogeneous speculators and asset price dynamics: Further results from a one-dimensional discontinuous piecewise-linear map. *Computational Economics*, 38(3):329.

Tramontana, F., Westerhoff, F., and Gardini, L. (2010). On the complicated price dynamics of a simple one-dimensional discontinuous financial market model with heterogeneous interacting traders. *Journal of Economic Behavior & Organization*, 74(3):187 – 205.

References III

- Tramontana, F., Westerhoff, F., and Gardini, L. (2013). The bull and bear market model of huang and day: Some extensions and new results. *Journal of Economic Dynamics and Control*, 37(11):2351 2370.
- Tramontana, F., Westerhoff, F., and Gardini, L. (2014). One-dimensional maps with two discontinuity points and three linear branches:Mathematical lessons for understanding the dynamics of financial markets. *Decisions in Economics and Finance*, 37.
- Tramontana, F., Westerhoff, F., and Gardini, L. (2015). A simple financial market model with chartists and fundamentalists: Market entry levels and discontinuities. *Mathematics and Computers in Simulation*, 108:16 – 40. Complex Dynamics in Economics and Finance - Papers of the MDEF 2012 Workshop.